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The boundary-layer flow over a semi-infinite horizontal circular cylinder heated 
to a constant temperature and immersed in a uniform axial free stream is dis- 
cussed in five situations corresponding to successively greater displacements 
from the leading edge. In the first three cases the drift velocity due to buoyancy 
is assumed small compared to the axial velocity component. Close to the leading 
edge of the cylinder the techniques of Seban & Bond are extended to include the 
drift velocity; far from the leading edge the asymptotic series methods of Stewart- 
son, of Glauert & Lighthill, and of Eshghy & Hornbeck are employed to  
obtain a solution for the drift velocity. In  the intermediate zone where the series 
solutions do not apply the appropriate partial differential equations are solved 
numerically. Still further downstream than the region where the ‘asymptotic ’ 
solutions hold it is assumed that the boundary-layer flow is primarily convective 
and that the boundary layer is thin compared with the radius of the cylinder. 
A series solution is obtained which is valid near the lowest generator of the cylin- 
der. Numerical methods are used to advance this solution upwards around the 
cylinder by solving the full boundary-layer equations step-by-step. 

1. Introduction 
We consider the velocity and temperature distributions in the boundary layer 

about a semi-infinite horizontal circular cylinder which is heated to a constant 
temperature T, above the ambient temperature T, and is immersed in a uniform 
axial free stream U, of infinite extent from the boundary-layer point of view. 
Throughout the discussion it is assumed that ( X / a )  (%/az) < 1 so that the drift 
(azimuthal) velocity component is small compared with the axial velocity com- 
ponent (here X = distance from the leading edge; a = the radius of the cylinder; 
9 = the Grashof number = pg(T, - T,) a3/v2; 92 = the Reynolds number = aU,/ 
v). Near the leading edge X / a  < 8, corresponding to a boundary layer thin com- 
pared with a, and there is no restriction on the size of the Grashof number. Here 
the well-known series solution of Seban & Bond is extended to include the drift 
velocity. Further from the leading edge, where the boundary layer is neither 
thick nor thin compared with the cylinder radius a, the appropriate partial 
differential equations are solved numerically. Still further downstream the prob- 
lem is treated subject to ( X / a )  (%/92z) < 1 < ( X / a )  (I/&!), which guarantees that 
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the boundary layer is thick compared to  a and that the drift velocity remains 
small compared to  the axial velocity component. The solution is accomplished 
by extending the work of Stewartson (1955), of Glauert & Lighthill (1955), and 
of Eshghy & Hornbeck (1967) to  satisfy the boundary conditions on the stream 
function and the temperature through exponentially small terms in order to 
obtain a solution for the drift velocity which satisfies the boundary conditions 
asymptotically. Still further from the leading edge the buoyant fluid will rise 
about the cylinder and prevent the boundary layer from growing any thicker. 
Conditions will become independent of X as buoyancy becomes dominant. 
If 9 1 there will be a free-convection boundary layer with a superposed axial 
flow; this situation is discussed in $3 6-8. 

I n  each of the three regions considered in $$2-5 the three-dimensional problem 
reduces to a two-dimensional problem because of the assumption that the drift 
velocity is small compared with the axial velocity component. As a result, only 
the drift velocity depends upon the azimuthal displacement (measured around 
the cylinder from the lowest generator), and this variable is easily removed from 
the equations. Near the leading edge and far downstream the resulting two- 
dimensiona,l problem is amenable to  series solution, the appropriate changes of 
variable being dictated by the thinness of the boundary layer in the first case and 
by the thickness of the layer in the latter. I n  between, where the thickness of the 
layer is of the order of the radius of the cylinder, the partial differential equations 
of the two-dimensional problem are solved by an economical numerical method 
described by Terrill (1960). 

I n  the second half of the paper ($96-8) we discuss the flow as buoyancy be- 
comes dominant. We assume that this is the approach to  a steady-state regime 
in which convection by the drift velocity dominates over convection by the axial 
velocity: this essentially free-convective beliaviour occurs so far from the leading 
edge of the cylinder that  it isin fact independent of distance from the leading edge. 
Thus the equations of motion reduce to  two-dimensional equations. 

I n  addition to  a large Reynolds number we assume a large Grashof number, 
which ensures the boundary layer will be thin compared with the radius of the 
cylinder. The thinness of the boundary layer suggests a transformation which 
leads to  a series solution valid near the lowest generator. The series furnishes 
the initial profiles for a step-by-step numerical technique which uses the full 
boundary-layer equations to obtain profiles a t  stations successively further from 
the lowest generator. 

2. Equations of motion when axial flow dominant 
The assumption that U2/a2 < (Tw- T,)/T, < 1 (a = the velocity of sound) 

permits us to  ignore the temperature variation of the thermometric conductivity 
K and of the kinematic viscosity v and to  treat the fluid as incompressible, so that 
changes in density are significant only in producing buoyancy forces. 

With these assumptions the boundary-layer equations are 
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UU, + VUR + WUO/R = v( URR + UR/R), 
UT’ + VTR + WT&/R = K(T’R + TRIR), 

(2) 

(3) 

+Pq(T-Tm)sin8. (4) 

Here R is the radial displacement measured outwards from the axis of the 
cylinder; the azimuthal angle 8 is measured in the clockwise sense with 8 = 0 
at the lowest generator. U ,  V ,  and W are the velocity components in the X, R, 
and 8 directions, respectively, and T is the temperature of the fluid. Subscripts 
represent partial derivatives. 

The choice W ( X ,  R, 8) = Um(4X/a) (g/97 w ( X ,  R) sin8, according to which W 
grows linearly with X but stayssmall compared with U because of the assumption 
(X la )  (%’/L3?’2) << 1, enables us to ignore terms ( W / R )  a/aO and to replace (1)-(4) by 

RUx + (RV) ,  = 0, (1‘) 

Uux f v u ~  = v(URR+ UR/R), (2’ ) 

uTx+ VT’ = K(TRR+TR/R), (3’) 

U ( W ~  + w / X )  + ( V / R )  (wR)R = v(wRR + wRIR - 2w/R2) +,8g(T - T m ) / X ,  (4’ ) 

UWx+(V/R)(WR)R+ WW,/R= v(WRR+WR/R+(W,,- W ) / R 2 )  

where a factor X sin 8 has been removed from W ( X ,  R, 8). 
We consider (1‘)-(4‘) subject to the boundary conditions U = V = w = 0, 

T = T, at R = a = the radius of the cylinder, U = Urn, V = w = 0, T = T, as 
R -+ 00 or when X = 0. 

3. The solution near the leading edge 
The boundary layer near the leading edge, thin compared with the radius of the 

cylinder, is formed primarily by viscous retardation of the mainstream. 
The analysis for the U and V velocity components and for the temperature 

has already been carried out by Seban & Bond (1951). With the introduction of 
similarity variables x = (4/a) ( vX/Um)t, y = (U,/vX)i (R2 - a2)/(4a), a stream 
function S = a(vXU,)g f ( x ,  y ) ,  and a dimensionless temperature t = ( T -  Tm)/ 
(Tw-Trn), we satisfy (1’) by defining RU = SR and R V  = -Sx, and (2’)-(4’) 
become [(l +xy)f”]’+ff”+x(f,f”-f’fj.) = 0, ( 5 )  

(6) 

-2w(l+xy)f’-x(l+xy)f’w+t(l+xy) = 0, (7) 

(I/@ [( 1 + xy )  t’]’ +ft’ + x( f,t’ -f’t,) = 0, 

( 1 + xy)2  w ” + w‘( 1 + xy )  (z + xf, + f ) - *xw(x - xf, - f + yf’) 

where c is the Prandtl number V / K .  Here and from now on a prime represents the 
partial derivative with respect to y in partial differential equations and the ordi- 
nary derivative with respect to y in ordinary differential equations. 

In  the new notation the boundary conditions are f = f‘ = f, = w = 0, t = 1 
at y = 0,f’  = 2, t = w = 0 as y - t m .  

Equation (6) differs from the corresponding equation of Seban & Bond in 
that a viscous dissipation term which those authors include is neglected here. 
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u = J  z a = 2  
fO(0) 0 0 fm 0 0 

tO(0) 1 1 

WIJ(0) 0 0 
w m  
f , (O) 0 0 f m  0 0 

t , ( O )  0 0 

W J O )  0 0 

f m  0 0 fm 0 0 

t A O )  0 0 

W A O )  0 0 

f 3 0 )  1.32823 1.32823 

$20) - 0.51859 - 0.84462 

0.48332 0.39032 

0.69432 f 20)  0.69432 

W )  -0.31909 - 0.38319 

w;(o) - 0.05471 - 0.051 56 

fm - 0.16414 -0.16414 

tm 0.07608 0.09308 

w m  - 0.24632 -0.13691 

TABLE 1. Initial values for the series of 0 3 

These ordinary differential equations were solved numerically on Manchester 
University’s Atlas computer and were used to provide a starting profile at x = 0.01 
for the step-by-step numerical solution of (5)-( 7), which is discussed in $4. Table 1 
gives the initial conditions for (+ = and 2. 

4. Step-by-step continuation of the solution near the leading edge 
The series solutions presented in Q 3 become awkward when they must be ex- 

tended further and further to yield the desired accuracy. Instead of continuing 
the series we use them as they stand to provide initial profiles for a step-by-step 
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numerical solution of (5)’  (6)’ and (7) whose accuracy is limited only by the time 
required to make the necessary calculations on a computer. 

The numerical methods used have two distinctive features: equation (5) is 
treated as a second-order equation by solving for f ’ and substituting an ‘integral’ 
off’ for f itself; the profile f’(x + dx, y )  is actually obtained by solving for the 
quantity f ’ (x  + dx, y )  +f’(x, y). The starting approximation is 2f’(x, y ) ;  once the 

2.0 

f’ 1.0 

0 2 4 6 

Y 
FIGURE 1. Axial velocity profiles. 

iterative approximation to f’(x + dx, y )  + f ’(x, y) is acceptable the ‘old’ profile 
fl(x, y )  is subtracted, leaving the ‘new ’ profile. Since Terrill’s (1960) method re- 
quires only minor adaptations for the present problem, it is not necessary to 
describe it more fully here. 

First and second partial derivatives with respect to y were replaced by the 
standard three-point central-difference approximations; the derivative with 
respect to x was handled in the same way but cast into such a form that the 
quantity 1+2xldx became a parameter of the problem, allowing the finite- 
difference equations to be solved like ordinary finite-difference equations at 
any given value of x. At any particular point xk the mth iteratively obtained 
approximate profile f lm(xk ,  y )  was judged to be acceptable if 

p (x lc ,y i )  - p - l ( x k ,  yj)l < 10-5, j = i , 2 ,  ... , 140. 

The mesh-lengths used were dy = 0.05, dx = variable. The starting point was 
x = 0.01 with dx = 0.002. As the integration proceeded away from the leading 
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edge it was possible to increase dx without slowing down the rate of convergence 
of the iterations. The integrations were performed twice, in one case with a mesh- 
length dx and in the other with 2dx, and the size of the step was kept small enough 
to guarantee agreement to a t  least the four decimal places desired. 
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FIGURE 2. Temperature profiles. -, u = 9; --, u = 2. 

't 6 

Y 

FIGURE 3. Drift velocity profiles. -, u = it-; -- , u = 2 .  

Figures 1-3 show profiles for f I ,  t ,  and w for a few values of x ranging from 
x = 0.05 to x = 4. Figures 2 and 3 also include approximate temperature and 
drift-velocity profiles for x = 40.17. These were obtained from the leading terms 
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of the series solutions developed in $5. Table 2, which is available from the editor, 
presents the dimensionless flow parameters 

!lf:+f’;(l+Y)+-itf’fl+fi= 0, 
yG;+G‘;(l+y)+G; = 0, 

yG[ + G;(l+ y) + 66 + BG; fi+ &Gi f;+ Gi = 0, 
yH;N+E;(l+y)+H; = 0, 

and also f”(x, 0), t ’ ( X ,  0) and w’(x, 0). The integrals were approximated by the 
Euler-Maclaurin formula, following Terrill, and the derivatives were obtained 
by means of a Maclaurin expansion about y = 0. The results are given for G- = 4, 2. 

(11) ) 

5. The solution in the Glauert-Lighthill-Stewartson region 
Still further from the leading edge we consider the problem subject to 

( X / a )  ( 5 / @ 2 )  < 1 < @/a) (I/%)’ 
so that the boundary-layer thicknesses are now many times the radius of the 
cylinder, but we still have W < U ,  V .  

The analysis for this region parallels Stewartson’s analysis for the U and V 
velocity components in terms of a stream function. Eshghy & Hornbeck’s solu- 
tion for the temperatureisextended so that, asin Stewartson’s work, the boundary 
condition on the cylinder is satisfied through exponentially small terms. These 
refinements permit a solution for the W velocity component which satisfies the 
boundary condition on the cylinder asymptotically. 

The equations in physical variables and the boundary conditions are those 
given in 9 2 (equations (1’)-(4‘)). We let 
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The first two of these equations and their solutions were obtained by Glauert & 

The solutions of some of (1 1) are 
Lighthill (1955); the rest were obtained by Stewartson (1957). 

f ,  = 2(yEi( -y) + e - u -  l), G; = g e - u ,  H i  = he-u, 

where g and h are arbitrary constants, and the Ei( - x ) ,  EI(  - x )  which appear in 
the solutions forfl,fi, etc., are defined to be 

Solving the equations for f 2 ,  H ,  and so on rapidly becomes very tedious, but it 
is possible to satisfy the boundary conditions without integrating all of these 
equations explicitly. What concerns us is their behaviour when y < 1 (i.e. as 
y -+ e-P), since it is possible to satisfy the conditions as y +- GO but not those on 
y = e-B by considering the f, one a t  a time. 

For 0 < y < 1 we use the approximations 

Ei(-y) = ?+logy-y, EI ( -y)  = 7f”12+*Ei2(-y) 

through terms in y; y = Euler’s constant = 0.5772157.. . . Then we have approxi- 
mately 

.ti= C2+2y10gy+4y+2y10gy, 

Gi = G;(log?/-y), 

H i  = Hi(log y - y )  - G; log y, 

where the constants B,, C,, n = 2,3,4, . . . , defined in Eshghy & Hornbeck, 
arise in the approximation f ;  = B, + C, log y for y < 1 and satisfy the relation 
C, = Bnp1. 

When we insert these approximations into the series expansion for f ’  and 
require f ’(e-1, /3) = 0,  we obtain 

f ’  = (G; - 4) e-B/p+ O(e-P/p2). 

Hence by choosing G; = 4 on y = e-P we can satisfy the boundary condition to 
O(e-P/P). Similarly the requirement tha t f t f ,  = 0 on y = e-P implies 

0 = f + fP  = e-P [C, - C2 + GI( 1 - log p)  - H1]/p2 + . . . . 
By taking H, = Cl-Ci( = 2(1- y ) )  and G, = 0 on y = e-P we can satisfy the 
condition f + f B  = 0 on y = e-8 to O(e+/,P). 

In  the course of satisfying the boundary conditions we have determined the 
values of G,, G;, and H ,  on y = e-P, but the corresponding value of H ;  remains 
undetermined, presumably because this analysis is ambiguous, as Stewartson 
(1957) noted, since the origin of X displacement is unspecified. 

I n  order to satisfy the boundary conditions on the cylinder more accurately 
i t  would be necessary to include higher powers of logp in the series expansion. 

The solution of (9) for the dimensionless temperature t follows by the same 
techniques. Eshghy & Hornbeck’s definition, which we use here, is very 
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convenient since when CT = 1 (9) for t is identical with (8) regarded as an equa- 
tion forf'. Neglecting the boundary condition on f + fa, we see that the condi- 
tions on f' itself are identical with those on t. Thus when a = 1 we can make a few 
modificationsinf'to obtain the solution for the temperature. Since one boundary 
condition has been eliminated the complementary functions H,, H, are no 
longer needed. We make the choice G; = 4 as before, but G remains unspecified 
because the analysis does not fix the behaviour of the temperature at  the leading 
edge of the cylinder. 

When a + 1 we let 

t(Y,P) = 2 +  [ t l ( Y ) + ~ l ( y ) e - ~ / ~ k l / P +  [tz(Y)+T,(Y)e-~/P"/P2+ e s . 7  

where t ,  and t, were found by Eshghy & Hornbeck and we extend the series by 
including the terms involving Tl and T,. We shall choose k = 1 when l/a is non- 
integral and k = 0 when l/a = 2, 3, 4, .... 

We want to sabisfy (9) and the corresponding boundary conditions. By insert- 
ing the expansion for t(y, /3) into (9) we obtain 

( l /a)yt ;+(1/a+y)t ;  = 0, 

(l/a) yt; + (l/a + y) t; + *fit; + t, = 0, 

yPi+( I+ya )T ;+T ,  = 0. 

The solution for tl(y) appropriate to t +- 0 as y + co is t, = 2Ei( - ya) .  

y = e-8, so again we consider the approximate forms of the solutions for y < 1. 

and the constants are given in their article) becomes 

We can satisfy the boundary conditions term-by-term as y + 00 but not when 

Eshghy & Hornbeck's result t, = b,  + c, log y, rn = 1 ,2 ,3 , .  . . for y < 1 (c, = bn+ 

t ,  = I3,+c1logy-2ya, 

t ,  = b,+c,log y + y[4(y+ (1 -7)  a) + 2 ( 2  - a) (1% Ydl ,  

when terms in y are included. The solution for Tl which vanishes at  infinity is 
Tl = M e-va 9[ 1 - 1/a, 1 ; ya] ; 9 is a confluent hypergeometric function and X 
is an arbitrary conskant. 

When l/g is not an integer 9 is the confluent hypergeometric function U as 
defined in Slater (1960). U[a,  b ;  x] can be approximated by 

when x < 1. 
Inserting these approximations for U and for t, and t, into the series for t(y, P )  

and requiring t = 0 on y = e-8 shows that the choice .ill = 4r(1- l/a) for the 
arbitrary constant satisfies the boundary condition to O(e-p/P). 

When l/a = 2 , 3 , 4 ,  ... we take S = ,F,; this is the 'usual' confluent hyper- 
geometric function and is also defined in Slater. Because 1 - 1/a is now a negative 
integer, ,F, is a finite polynomial. 

~ [ a , b ; ~ ]  = - (iogx+d(iogr(a))/da+2y)/r(a) 

When y < 1 and l/a = an integer N ,  

T' = M (  1 - y + ( N  + 1) y2/(4N) + . . .) 
approximately. In this case we take M = 4 and satisfy the boundary condition 
to the same order as before. 
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To improve the accuracy of the solution it would be necessary t o  introduce into 

To solve (10) for the drift velocity we employ a series 
the series additional terms multiplied by e-B log and so on. 

W(Y,P) = [Wl(Y) +e-~Q1(Y)/Pk+P“-~”l(Y) + * * * l / P  
+ b Z ( Y )  + e-P&2(Y)IPk +P2e-%(y) + ... l/P2, 

where k = 1 when l/a is non-integral aiid k = 0 when l/a = 2, 3, 4, .. .. 
By inserting this expression into (10) we obtain 

4y2w’; + ~ Y W ; (  5 + 2y) = t,, 

4y2Si + 2~8115 + 2y) + 61~8, = 0, 

4y2&‘; + ZyQi(5 + 2y) + 4yQ1 = T,, 
4y2Si + 2yX6(5 + 2y) + 2yS; f1+ 3x1 fl + 6 ~ x 2  - 4y8, = 0. 

The solution for S, which vanishes at  infinity is 

S = Ky-g/I tle-tdt, K arbitrary. 

When y < 1, the solutions of the equations for w,, w,, etc. can all be approxi- 
mated by 

w,, = A ,  log2?/ + B, log y + C, + y(D,10g2y +#,log y +F,) + . . ., 
where, in terms of Eshghy & Hornbeck’s b,, c,, A ,  = &cn, and B, = &b,-$c,. 
The C, must be determined from the boundary conditions on the cylinder, and 
D, = 0. 

When y < 1,  the solutions for S, and S, are approximately 

S,  = K ( - * d y - t + # +  ...), 

S ,  = yd{A’ + K d ( y  - y2 + . . .)}, A’ arbitrary. 

In order to  satisfy the condition w(e-@,P) = 0 we must choose Ii = 2A1n-$, 
A‘ = B,- A,, and C,-, - B,+ A,+] = 0, n >, 2. 

The terms Qle-P/,81+k, etc., required in the series for w (since the temperature 
series includes a term T,e-P/,81+k) do not provide any arbitrary constantswhich 
can be used to satisfy the boundary condition through exponentially small terms. 
To do this it would be necessary to  include terms 

e-W%y)  + P2(Y)/P+ . . * 1 
intheseries with4y2P;+2yP;(5+2y)+ lOyP, = OandP, = c0nst.e-y 

Eventually it would be necessary to include terms 

t-getdt . ( j o g  ) 
e-P(Jf,(y) +Jf,(Y)/P+ *. . I  logP/P2- 

The initial values of the complementary functions T,, Q1 may be found approxi- 
mately from the following relations which obtain for y < 1 : 

TI = 4(1-y+#y2+ ...), 

Q1 = g10g y+&y-+O$+ ... 
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or CT = Q and 
Tl = -4(1-2y) (log2y+ 1 + 2y+ ...), 

Q1 = -Q log2y+Dlogy+E+Pylog2y+ ..., 
B = -4(Iog2+1+2y), D = (3B+8)/18, P = (8-30)/21, 

E =  -*(B+4P+2D) for u =  2. 

Approximate temperature and drift-velocity profiles, obtained by keeping 
terms to O(l/@) in the series solutions, are shown in figures 2, 3 for /? = 6 
(x = 40.1 7); the profiles are expressed in terms of the variables x, y, t, and w of 
§ 4. 

6. Equations of motion when buoyancy dominant 
Because we are considering the approach to a steady-state regime independent 

of displacement from the leading edge and because our assumptions guarantee 
a thin boundary layer, (1)-(4) reduce to 

\ 8 - k K = o ,  

I VW,+ WW, = vWmn +,8g(Tw - T,) 9 sin (s/a),  

w9s+ van = KB,,, 

wq+ vu, = VUnn I 
in physical variables. Here n is the normal measured outwards from the surface 
of the cylinder; s is are length measured clockwise from the lowest generator 
(looking downstream); 9 = (T-Tw)/(Tw-Tm). U is the velocity component 
corresponding to z, the axial displacement. V and W are the components of velo- 
city associated with n and s, respectively. The boundary conditions are 

U = V = W = O ,  9 = 1  on n = 0 ,  
and U,  = U, V =  V(s ) ,  W = 9 =  0 as n+co. 

We can satisfy the first of (12) by introducing a stream function S and taking 
W = X,, V = -Ss. Let x = s/a, y = $&/a, f = S/v@ so that W = vg*f'a, 
V = - v3*f,/a. The rest of (1 2) become 

(13) i f'fj-f,. = f"+Ssin(x), 

f'U,-f,u' = U",  

f '8z - f,9' = B"/cT, 

with U = f = f ' =  0,B = 1 on y = Oand U = 1, f =f(x), 9 = Oas y + a .  
The fist two of (13) have been obtained by Ostrach (1964). 

7. The solution valid near the lowest generator 

generator of the cylinder (i.e. near x = 0) let 
In  order to get a solution which is a good approximation near the lowest 

f(x, Y) = fl(Y) x +f3(Y) x3 + * * * 7  

9(x, y) = t,(y)+t2(y)x2+ ..-, 
U(x,y) = u,(y)+Uz(y)~2+ .... 
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Inserting these into (1 3) and equating coefficients of like powers of x gives 

1 
fi” +fly; - c.f;)z + to  = 0, 

t; +f1tA(T = 0, u; + UAf l  = 0, 

f:+ 3 f ’ ; f 3 + f ~ f i - 4 ~ ; f ; + t 2 - ~ t o  = 0, 

t; + a(t;;fl - 2tz.f; + 3 tb f3 )  = 0, 

u; + u;; fl - 2u2 f ;  + 3u; f8 = 0, 

using the series expansion of sinx. The boundary conditions arefn(0) = fA(0)  = 0, 
n = 1,3;  fl(co) = const., f 3 ( c o )  = 0;  to(0) = 1, to(co) = 0; t2(0) = tz(co) = 0; 
u,(O) = 0, n = 0, 2 ;  uo(co) = 1, u2(co) = 0. 

Equations (14) for thef’s and t’s have been obtained by Poots (1  964). 
In  this case they were solved numerically and used to provide initial profiles 

for the step-by-step technique discussed below in 9 8. The initial values for the 
integration of (14) are presented in table 3 for the cases a = +, 2. 

a = *  
0 
0 
0.89780 
1 

0 
0-45772 
0 
0 

0 
0.01396 
0 

- 0-00091 

- 0.32621 

- 0.09677 

l T = 2  

0 
0 
0.73290 
1 

0 
0.37999 
0 
0 

0 
0.02432 
0 

- 0.00089 

- 0.53491 

- 0.08154 

TABLE 3. Initial conditions for equations (14) 

8. Stepwise continuation of the primarily convective solution 
Once again the starting point is equations (13). Instead of forming the finite- 

difference counterparts of these we begin by making a Gortler-inspired transfor- 
mation due to Saville & Churchill (1967) which has the advantage that the 
temperature and velocity profiles expressed in terms of the new variables change 
relatively little as x proceeds from zero to n-. With 

E = Szsin-i (2) dx, q = (2C)fysinA (x), f(x, y) = ($6)~ F ( ( ,  q), 
0 

equations (1 3) become 
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5 dsinx. 
3smx d[ ’ K(C) = $+- - K(6) = $ - & - ( ~ ) k p +  ... 

when .$ < 1. 
Equations (15) were transformed into finite-difference equations in the way 

described in Terrill’s (1 960) article and sketched briefly in $3 2-5. 
By analogy to Mitchell’s (1961) use of a variable step-length to overcome the 

singularity in the von Mises equation for the flat plate, an exponentially increas- 
ing step was used for dy to circumvent difficulties arising from the functions’ 

r = L  

0.06 

0.04 

0.02 

0 0,8534 2.2698 46207 8-5230 15.0000 q i  
8 16 24 32 40 i 

FIGURE 4. Drift velocity (stream function) profiles. -, u = 9; -- , u = 2 .  

slow (e-q‘) approach to their final values as 7 +- co. (In the fist half of the paper the 
corresponding variation is e-gau.) ‘Infinity’ conditions were imposed at  y = 15; 
this value was reached after forty steps of length given by dyi = 1.065388i-40. 

Except that an exponentially growing mesh-length was used for y, the com- 
putational procedure was identical with that described earlier. The profiles for 
x = 0 were used as the initial profiles at  x = 0.01; the initial increment was 
dx = 0.0005. The results were judged acceptable when two successive iterations 
produced agreement t o  within 5 x everywhere. The latest iteration for Fq 
was used to obtain an improved result for 8 and vice versa until the results for 
both functions were satisfactory. 

Figures 4-6 show velocity and temperature profiles at a few values ofxranging 
from about x = 0.01 1 to about x = 3. Table 4, which is available from the editor, 
contains sample values of the flow parameters F&(& 0 ), a&, O ) ,  Un(& O ) ,  F([, co), 
Ft (<,co), and dw, d8, and dU, where 

The flow parameters were obtained by the methods described before ; they are 
quoted for CT = 4, 2. 
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As a check on accuracy, the profiles at x = 0.1355 (6 = 0.05225) obtained 
by the step-by-step computations were compared with profiles obtained from 
the series method for the same value of x. The agreement was poorest in the last 
few values near 7 = 15; the largest discrepancies amounted to about 5 0.001. 

0 0.8534 2.2698 4.6207 8.5230 n. 
' I  i - ._.. 

8 16 24 32 i 

FIGURE 5. Temperature profiles. -, d = Q, --, d = 2. 

U 

0.8534 2.2698 441207 8.5230 T (  
8 16 24 37 . 

0 

0, 
2 

FIGURE 6. Axial velocity profiles. -, u = 4; --, cr = 2. 

Of course this places alimit on the accuracy of the flow parameters.With adifferent 
adjustment of the variable mesh-length, i.e. with a shorter final step and probably 
a slightly larger number of steps to cover the interval, it should not be difficult to 
obtain results reliable to four decimal places. Another possible improvement 
would be the use of a slightly longer interval than 0 < 7 < 15. 

This article is an adaptation of my Ph.D. thesis (University of Manchester), 
which contains more complete numerical results for the three cases CT = Q, 1, 2. 
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